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Chapter I

INTRODUCTION

MicrostriP circuits form an integral part of most current

microwave systems. The attractiveness of implementing a microwave

network in microstrip results from the ease with which an intricate

circuit can be manutactureC. If the increased losses (as compared

with, for example. waveguide) can De tolerated, the microstrip

implementation of a circuit is frequently preferrea.

Manufacture of a microstrip circuit starts with a substrate. a

rectangular slap of dielectric. Common dielectric materials include

Teflon, sapphire, quartz, Alumina, silicon and qallium arsenide.

Substrates with large dielectric constants are frequently selected so

as to confine most of the fields within the oody of the suostrate.

Initially, the substrate is completely covered Dy a thin

conductor commonly called metalization. The metalization may nave

several layers of different metals to enhance suDstrate adhesion.

The too side of the substrate is then covered ov a Dhotoresist

which is exposed with the desired microstrip circuit pattern. The

unexposed (or the exposed) portions of the metalization are then

etched away leaving the desired circuit. The bottom side or the

suostrate remains metalized. forming a ground plane.

Frequently, additional components (e.g., transistors, capacitors,

resistorsi are then soldered or bonded to the surface of the

microstriD circuit. Unless the microstrip circuit is to De used as an

antenna. the tinal step of manufacture is to Place the circuit in a

shielding. conducting oox. Coaxial connectors Denetratino the shielc
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orovide connections to the circuit. It this final step is not

pertormea, unwanted interactions may aevelop when the circuit is

placed in a system.

At this Point the circuit response is measured, usually as a

function of freauency. Since the initial circuit resoonse is rarely

satistactory, the circuit must De 'tweaKea'. Tweaking consists of

removing metalization with a diamond scrioe, or addina metalization Dy

means or silver epoxy or oy adding wire ponds connecting small patches

or metalization inclucea on the microstrip suostrate for just that

Purpose.

In some cases. tweakina is not feasiDle. For example, with

monolithic microwave integrated circuits, the suostrate (usually

gallium arsenide) and circuit are so fragile and so small (geometries

on the order of microns). that any physical moditication of the

circuit is liKely to result in the destruction of the circuit. In

this case, the only alternative is to repeat the entire circuit design

and manufacture. This can cost several tens or thousands of dollars

and occupy a significant fraction of a year.

rhe precise analysis of microstrip circuits is the oDjective of

the work aescriDed in this paper. Such an analysis will allow any

circuit modification to De pertormea prior to manufacture resultina in

the reduction or elimination ot Dost-manutacture tweaking and

reaesign.

Current microstrip analyses start with a model Dasea on circuit

theory 11]. This usually includes TEM transmission lines. StUDS.

capacitors, inductors and resistors. More advanced analyses will
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include transmission line loss ano dispersion moaelea by closed torm

aporoximations oasea on more extensive electromagnetic analyses.

Microstrip discontinuities (e.g., step in line width, junction or

three or more lines, etc.) may also De included in a similar manner.

Restrictions on the closed form approximations are sometimes

stringent.

The circuit model of a large microstrip network can become

complicated. As such, interconnection errors in the moael may be

difficult to detect and remove. In addition, while the resulting

accuracy is sufficient to approximately realize a desired circuit

response, the circuit model accuracy falls short of that which would

be desirable for many tasks.

Most other work to date has concentrated on development of

numerically efficient circuit models of microstrip elements. Such

models can be included in extensive existing microwave circuit

analysis programs in hopes of improving the accuracy of the microstrip

circuit representation. The concentration on numerical efficiency

results from the requirement for automatic circuit optimization.

Optimization algorithms require the repeated analysis of a circuit,

changing parameters of the circuit each time. An analysis which can

not De performed Quickly, such as an electromagnetic analysis, is

unacceptable in an optimization loop.

Electromagnetic analyses have been used to provide data points

for titting approximate closed form expressions. Also, cue to the

complexity of an electromagnetic analysis, the vast majority of work

lias been restricted to, or closety related to, two dimensional
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microstrip structures (i.e., no variation of geometry along one axisj.

The technique presented here will take a different tack. A

precise three dimensional electromagnetic analysis of aroitrary

microstrip geometries is the primary objective. While this

essentially precludes using the analysis in an optimization loop (at

the present time), the analysis will still be sufficiently fast that

meaningful results can be obtained, even on a personal computer, for

circuits of moderate complexity.
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Chapter 2

PREVIOUS WORK

Most current applied microstrip circuit analysis is based on

circuit theory approximations [I] to the actual microstrip structure.

For example, a microstrip line can be approximated Dy a TEM

transmission line [2]. More elaborate analyses will include closed

form approximations to circuit theory models of various microstrip

Giscontinuities [l). The approximations are typically basea upon an

electromagnetic analysis. Some circuit theory analyses are more

closely related to an underlying electromagnetic analysis [3], C4] in

order to achieve greater accuracy. In all cases, the objective is to

reduce a microstrip analysis problem to a circuit theory problem with

emphasis on speed so that the analysis may be included in an

optimization loop. Electromagnetic analysis of an entire microstrio

circuit, without resort to circuit theory, has not yet been pursuea

due to excessive numerical requirements.

Here, we will explore just such an electromagnetic analysis of

arbitrary microstrip structures. The numerical requirements will be

large out manageable, even on current personal computers. The time

reauired for analysis will preclude its inclusion in an optimization

loop, however, the accuracy providel will justify the use of the

analysis prior to circuit fabrication. We will also note that in many

other fields (e.g., structures, thermodynamics, fluid flow,

seismology, etc.) the value of an accurate, numericaily intensive,

general puirpose computer analysis is well established 5J.

The analysis follows from section 8-11 of C61 which describes a
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technique for the analysis of planar waveguide probes. The technique

is modified for a shielded microstrip box and is used to calculate the

fields in the box due to any rectangular patch of current. These

results are then applied in a Galerkin implementation of the method of

moments [7].

The analysis described here is closely related ,b the spectral

domain technique [9]. The spectral domain technique was first applied

in the analysis of microstrip dispersion (10), [Ill.

A number of techniques, including the spectral domain technique,

have been applied to the analysis of three dimensional microstrip

resonators (12) - [38). The vast majority of this work has been

directed toward the evaluation of resonant frequencies and modes.

Little work has been reported concerning the analysis of the forced

response of microstrip circuits. Potential difficulty evaluating the

forced response of a shielded microstrip circuit due to difficulty in

modeling sources has been mentioned [9].

One exception is a time domain technique which models the

microstrip circuit as a mesh of transmission lines with current on a

line representing the magnetic field and line voltage representing

electric field (31) - (33). The volume of the microstrip box is

divided into a mesh of these transmission lines. For each point in

the mesh, six transmission lines must be used in order to represent

the six possible vector components. While this can result in extremely

large numerical requirements, it can provide detailed information on

the resulting fields and currents.

Another forced response analysis (34) models a microstriD circuit
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using planar waveguide (the microstrip line is replaced by a waveguide

of wider width with magnetic walls along the sides and electric walls

on top and bottom). In this case, the surface of the microstrip is

divided into a mesh with inductors connecting nodes and capacitors

connected in shunt to ground. This technique can be used when the

substrate is thin with respect to the wavelength and when coupling

between microstrip edges may be neglected. Since only the surface of

the equivalent planar waveguide is divided into a mesh, the numerical

requirements are reduced.

More typical are analyses for the resonant frequencies of

microstrip resonators. These are usually accomplished in the spectral

domain using techniques related to [12]. For example, [13] describes

the analysis of triangular microstrip resonators. Full wave (as

opposed to quasi-static) analysis of rectangular microstrip resonators

is the topic of [15] - [17], [19] and [20). Rectangular slot

resonator analysis is presented in [24). Some of the above analyses

are for microstrip resonators in a rectangular waveguide tube, while

others are for resonators completely shielded in a box. These

analyses can be used in the evaluation of microstrip discontinuities

[38].

Several other analyses [14], [18), [21] approach the resonator

problem with a quasi-static assumption.

A number of papers have dealt with resonators of arbitrary shape

[25] - [37). Farrar and Adams [25] describe the quasi-static

approach, while Jansen [26] - [29) details a full wave approach.

Jansen uses a polynomial to represent the resonator surface current
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and applies a spectral domain solution. A finite difference method,

the method of lines, has also been applied to microstrip resonators

130) - [33]. This technique uses the difference in field between

adjacent points on the substrate surface to represent derivatives of

the field. The initial phase of the analysis requires points covering

the entire substrate surface while the final phase need consider only

those points on metalization.

The frequency domain analysis of the forced response of shielded

microstrip circuits merited little attention in the literature

reviewed here. It is not known why the above resonator analyses were

not applied to a forced response analysis.
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Chapter 3

METHOD OF ANALYSIS

The rectangular conducting box will be treated as two separate

waveguides joined at z=h (Figure 3.1 and 3.2). We will work with

waveguides of identical dimensions joined with no offset. The

waveguide for z<h will be short circuited at z=O and will be filled

with a dielectric with dielectric constant c,. This region will be

referred to as region 1. The waveguide for z>h will be short

circuited at z=c and will be filled with a dielectric with dielectric

constant E0. This will be referred to as region 0. While region 0 is

usually air, E, may take on a value other than that of free space.

Using regions I and 0, rather than regions 1 and 2, simplifies

subsequent notation. The analysis is extended in a straightforward

manner to multi-layered geometries.

The dielectric in region 1 will be called the substrate.

Microstrip circuitry is realized in printed circuit fashion on the

surface of the substrate. The analysis we will pursue divides the

microstrip circuitry (the metalization on the surface of the

substrate) into rectangular subsections. An appropriate form for the

surface current distribution on the surface of each subsection is

assumed. Then each subsection is taken individually and the electric

fields tangent to the surface of the substrate due to a unit current

on that subsection are calculated. After the tangential fields due to

each subsection have been calculated, the magnitude of current on each

subsection is selected such that an integral of the total tangential

electric fields over each subsection goes to zero. A source is
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modeled by a subsection on which the tangential electric field goes to

a value other than zero.

All boundary conditions except tangential electric field on the

metalization are met in the initial calculation of the electric field

from each individual subsection. By selecting the appropriate

currents for each subsection, the tangential electric field boundary

condition on the metalization is also satisfied, providing us with the

solution. Once all the currents are determined, the N-port circuit

parameters follow immediately.

3.1 Expansion of the Green's Function in Terms of Orthonormal

Waveguide Modes

The tangential (or transverse to z) fields in a given region due

to current on a given subsection will be expressed as a sum of

nomogeneous waveguide modes. Modes transverse to z will be used with

a z dependence such that the boundary conditions at z=O for region I

and at z=c for region 0 are met. Expressions for the tangential fields

will be written as a weighted sum of these modes
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Si n( I . Z IE= ' . e i
sink K', n)

siK. i ,h

(3.1)

sin[K , (c-z)]
t ~si nLK', (c-n)] -

cos K O (c-z)]

sinLK',C, (c-n)]

wrere i = Summation index over all modes TEz and TMZ.
V i = the modal coefficient (weight) of the ith mode.
Yi = the admittance of the ith mode as follows:

Y 'tj : jw{, /K~z

yTM = jKE /CK,)

YKT' = -Jw/K

Klz : I - -Kx-Ky
K 0  

= +Kiz= +4Ko-K-X-K

Iz 40

Kx = Mu/a, for rectangular waveguiae.

KY = Nit/b, for rectangular waveguide.

K1 = wjr -e

K, = W.Jr oo

Note tnat Kz for region I is taken as the negative square root

and for region 0 is the positive square root. Also, the modal

admittances are the admittances of the standing wave modes rather than

those of the usual traveling wave modes (they differ DV the constant
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j). The constant in the denominators guarantees continuous tangential

electric field at the surface of the substrate (z=h), i.e., we are

assuming there is no magnetic current.

If other than a short circuit forms the top (z=c) or bottom (z=O)

of the shielding box, then only the z dependence (and corresponding

normalizing constant) of the above equations need be modified.

The e i and h i are the orthonormal mode vectors. The mode vectors

are determined by the geometry of the shielding waveguide. We will

consider only rectangular waveguide here. For rectangular waveguide,

the mode vectors may be written as follows

e '(x,y) = N~gu x - N~g Uy
x - 22U y(3.2)

eTm(x,y) = N2 g9u x + Ng 2 Uy

h i = uze i  e i = -Uzxh i

where g, = cos(Kxx)sin(Kyy)

92 = sin(Kxx)cos(Kyy)

N, = ,J770 . M=O and N$O

= 0 , M#O and N=O

= 2(N/b)Jab/(Na+M-Wb3 , MOO and N*O

N2 = 0 , M=O and N#O

= J27E, M*O and N=O

= 2(M/a)jab/(N'aX+Mb7) , M*O and N*O

The functions g, and g92 provide the x and y dependence of tne

mode vectors. The constants N, and N2 normalize the modes such that

the square (the mode vector dotted with itself) of any mode vector
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integrated over the x-y cross section of the guide will be unity.

Since the mode vectors are also orthogonal, we have an orthonormal

basis for the expansion of any field in the waveguide due to current

on the surface of the substrate.

The superscripts TE and TM mean that the index i is limited to

the TE or TM modes respectively. The functions g,, g,, N, and N, are

implicitly dependent on the index i through the conventional mode

numbers M and N. Note that the M=O, N=O mode need not be included as

all current is transverse to the z direction [39), [40).

If a different geometry is selected for the waveguide shield,

only the above mode vectors need be changed.

Given a specific current distribution, J(x,y) = JxUx + JyUy, on

the surface of the substrate, we must determine the modal

coefficients, the V i , of the field generated by that surface current;

This is accomplished by setting the discontinuity in tangential H

equal to the assumed surface current distribution. Then, using the

orthogonality of the modal vectors, we may determine the V i of the

field generated by the current.

is UZx[W'tlz=h - Htjz=h1

Substituting the modal expansion for Ht into the above expression

yields

is =  viYi(Uzxhi)

where Y 1ctnEKq (c-h)J-Ylctn(K h)



Analysis 14

The admittance is the parallel connection of the admittances

of the two shorting planes at z=O and z=c transformed back to the

substrate surface, z=h. This expression can be rewritten as

Js = - viiei

Dotting both sides with ej, integrating over the waveguide cross

section, and noting the orthonormality of the modal vectors, we find

V i  = -zi jJs'ei ds (3.3)

where Zi is the inverse of the Yi described above.

Substitution of (3.2) and (3.3) into (3.1) will yield the

tangential fields everywhere in the waveguide. Specialization of

(3.3) to a delta function for is will provide the Green's function in

the 'spatial' domain for current on the surface of the substrate. The

Green's function is a cosine and sine series in two dimensions with

the coefficients of the series representing the Green's function in

the 'spectral' domain.

Since we wish to have quick access to the actual fields, rather

than the transform of the fields, we will remain in the spatial

domain. Remaining in the spatial domain also appears to involve

little additional computational expense and will ease the tdSK of

maintaining conceptual clarity.

In what follows, we will determine the V i for various current
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distributions defined over rectangular subsections. The fields due to

these currents will be applied in a method of moments solution.

The derivation of the modal expansions presented above follows a

similar derivation in Harrington [6], section 8-11, pages 425-428, for

waveguide probes.

3.2 Evaluation of the V1 For Various Current Distributions

Evaluation of the V i will require the evaluation of surface

inLeyrals of the current distribution dotted with a mode vector. We

will consider only current distributions over rectangular subsections.

The current distributions will be symmetrical with respect to the

center of the subsection. Further, only current distributions which

are separable with respect to x and y will be evaluated. One

component of current, either x or y, will be evaluated at a time.

Since we will be working with separable current distributions,

the integrals of (3.3) reduce to the product of two one dimensional

integrals. We will evaluate the one dimensional integrals for a

number of cases.

While the evaluation of the integrals is tedious, the assumption

of current distribution symmetry will provide a simple result.

Specifically, the result of each Integral will be a constant,

dependent only on the dimensions of the subsection, multiplied by the

appropriate component of the mode vector evaluated at the center of

the subsection. The simplicity of this result will provide

considerable flexibility in the choice of expansion functions.
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3.2.1 The Rectangular Pulse Function

The rectangular pulse function is the simplest pulse function

that we shall consider. The rectangular pulse is defined as (Figure

J.3)

f(x) 1 , xo-Ax/2 : x < Xo+AX/2

: 0, otherwise

When the rectangular pulse is used as part of a current

distribution, we will require the evaluation of

Fc f(x)cos(Kx)dx and Fs = f(x)sin(Kx)dx

The constant K will be the wavenumDer corresponding to the

variable of integration, for example, Mn/a. Evaluation of the above

integrals is straightforward yielding

Fc = jsin(KAx/2)cos(Kxo), K*O

F, = jsin(KAx/2)sin(Kxo), K*O

Fc = Ax and Fs 0 0, K=O

Note that the constant which depends on the subsection dimensions

is the same for both cases, as one would expect from the nature of the

functions being integrated. In subsequent sections, we will refer to
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that constant as G(ax). In some cases, the integrand will be a

function of y instead of x. In such a case we will refer to G(Ay).

For the rectangular pulse we have

G(ax) = isin(Kax/2), K$O

= Ax, K=O

We will use FC , F5 , G(Ax) and f(x) as a generic notation. The

specific functions which they represent will depend on the type of

pulse Deing considered.

3.2.2 The Triangular Pulse Function

For reasons to be detailed later, it is desirable to investigate

higher order pulse functions. We will next consider the triangle

pulse function. The triangle pulse may De viewed as the convolution

of two of the rectangular pulses considered above. It is aefined as

X -X
f(x) = -+1, Xo-AX x < XoAX

- +, X 0 - x < Xo+&X
AX

= 0, otherwise

The integrals of interest are
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=F f(x)cos(Kx)dx ana Fs = 5 f(x)sin(Kx~ax

The indicated integrations (over the entire domain of f(x)) are

tedious out, again, the result is simple:

Fc = G(Ax)cos(Kx o ) and FS = G(x)sin(Kx,)

with G(Ax) = iY--.1-cos(K~x)), Ko

= ax, K=O

3.2.3 The Parabolic Pulse Function

A further convolution of the triangular pulse with a rectangular

pulse yields a piecewise parabolic pulse. When the x-axis is scaed

so that the area of the pulse is Ax (the same as the other pulse

types), we have

f(x) = 2(1* +x ") Xo-AX < x < Xo-AX/2

= 1----2)x", x-&x/2 < x < x,+&x/2

AX

1--x , X+ax/2 < x < x,+,ax

= 0, othcrwise

As before, the integrals of interest are
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F,= f(x)cos(Kx)dx and F, = f(x)sin(Kx)dx

Evaluation of these integrals must be performed over three

separate ranges. Since f(x) is symmetric about xO , the result

simplifies to

Fc = G(Ax)cos(Kx0 ) and Fs = G(Ax)sin(Kx0 )

with G(Ax) = .- 2sin(Kx,2)-sin(Kx)), K*O

%x, K=O

Note that even the piecewise parabolic pulse, has a result very

nearly as simple as the rectangular pulse result.

3.3 General Expressions for V i

We will use products of the above functions; the rectangular,

triangular and parabolic pulses; to form the desired current

distributions. For example, two rectangular pulses, one a function of

x and the other a function of y, would be multiplied to represent a

uniform current distribution over a rectangular subsection. A more

useful example is a rectangular pulse as a function of x multiplied by

a triangular pulse which is a function of , This would provide a

'roof top' current distribution as shown in Figure 3.4. If the

triangular pulse is replaced with a parabolic pulse, the flat portions

of the roof would become curved.

The roof-top distribution in Figure 3.4 depicts the current in a
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rectangular subsection. The base of the three dimensional drawing

represents the rectangular subsection. The height of the figure above

the base is proportional to the magnitude of the current density at

that point. The current flows in the direction of the triangle.

Figure 3.5 Shows two roof-top functions which have been placed on

adjacent, overlapping rectangles. Note that the sum of the currents

provides a piecewise linear approximation to the actual surface

current in the direction of current flow and a step approximation to

the current in the lateral direction.

We will not reference specific pulse functions in the derivations

that follow in this section. Rather, we will use the generic notation

introduced above. Specifically, f(x) will denote a pulse function

which is a function of x. Similarly, f(y) will denote a pulse

function which is a function of y. G(Ax) is the constant, derived

above, which is obtained when f(x) is multiplied by a sine or cosine

and integrated over the domain of f(x). Similarly for G(&y). We will

indicate distinct f(x) and G(Ax) functions by means of subscripts.

In subsequent derivations it will be necessary to differentiate

between source subsections and field subsections. For this analysis,

we will consider a surface current on only one subsection at a time.

That subsection will be termed the source subsection. With current on

one subsection, we must find the electric field generated by the

current on any other subsection. If we are considering the field on a

subsection, it will be called a field subsection. When we are

considering the field on the source subsection itself, the field

subsection and the source subsection are the same. We will indicate
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quantities relating to source subsections with a prime. Quantities

relating to a field subsection will remain unprimed. Thus G'(Ax) will

refer to a source subsection and G(Ax) will refer to a field

subsection.

A primed modal vector will be used to indicate that the modal

vector is to be evaluated at the center of the source subsection,

e.g., gt = gt(xo~yo).

To evaluate the V i , the modal coefficients, we will use (3.3)

d=-iijsei as (3.3)

The modal vectors, e i , are repeated here for convenience

e 'E(x,y) = N~g~ux - N~g Uy (3.2)

e7m(x,y) = N~glu x + N,g=uy

We will first consider an x directed surface current Js

xf, (x)f2 (y)ux ' After evaluating the V i for both the TE and TM modes,

we will then consider a y directed current, .Js = Jyf3(x)f,(y)uy. All

integrations are over the entire guide cross section.

V ix = -h S Jxf;(x)f (y)N' g' dxdyI mn x.
TM = _-TM 5 f,(x)f2 (y)N~g~dxdy

Viy ZTm  " Jyf4x)f (y)N g dxdy

ly mn jy
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Evaluating the indicated integrals, we obtain

TM=-T G(x)G'CAy)Ng, J

!"= -ZT "G;(X)G (Ay)N~g,' Jx

VTE = Z

VT" = -ZTm (&xGAyNgJ

These Vi may be used directly in (3.1). Evaluating tne

transverse electric fields at Z=h due to the surface current, J., we

f i ndl

Etiz.h = Viei

Substituting in the Viand evaluating Et due to the TE field

first

E Te = J(-hENG,(Ax)G2'(Ay)gJx + jTEG(xG(A~ YNg

E TE = T A~"X+

y X(+jT N G'Ax)G~cygJ ENG(xG(A~' N

Em= 1( -ZT mN G(AxGBygJx + ZT N1 G'4(Ax )G (Aylg' Jy)N2g,

Ey = (-N 2 GxGAy+J jT1' A~~yN
Tm mN G'(Ax+ m "NG4(Ax )G,(ygJ)g

Summing the TE and TM modes, we have
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N' T N 2 T )]

Ex,, [-G,(Ax)G (Ay)g~g,(N I mn+N 2mn]x

m,n
(2TE _jT ]

[G(x)G(&Ay)N,N2 9gg, mn Zmn)]Jy

(3.4)

Ey [G;( x)G (Ay)NN 2 gg 2 ( -)] +m

m,.
+ [-G4(,Ax)G (Ay)gg 2 m(N2 Z m+N1 t)3Jy

Equation (3.4) represents the electric field tangent to the

surface of the substrate. This equation is similar to eq. 18 in (9],

illustrating the close resemblance of this technique to the spectral

domain approach.

A quantity which will be of interest is a weighted integral of a

tangential component of the electric field on a subsection. We will

choose the weighting function for the x component of the electric field

to be f1 (x)f2 (y), where f, and f2 correspond to a field subsection.

Multiplying Ex by this function and integrating term by term, we find

that simply multipling each term in the summation by G,(Ax)G2 (Ay)

effects the integration.

Similarly, we will choose a weighting function for the y component

of the electric field to be f,(x)f 4 (y), where f, and f4 correspond to

a field subsection. In a like manner, the integration is effected by

multiplying each term in the summation for Ey by G.(Ax)G,(Ay).

These integrals (known as reactions) of the electric field will

be useful for implementing a Galerkin analysis and for calculating

circuit input admittances.

3.4 Implementation of the Method of Moments Solution
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A method of moments solution will be implemented by expanding the

current on the microstrip metalization into a sum of currents on

rectangles, the rectangles subdividing the entire metalization. The x

and y currents may (and will be) expanded onto distinct sets of

rectangles. The total current will be written as a sum of the current

on all rectangles.

J = I ixkfl(xlxk)fl(Y'Yk)ux + I JyRf5(x'xR)f4(Y'YR)Uy

The kth subsection is for x directed current and is centered at

xkyk. The Rth subsection is for y directed current and is centered

at xi,ye. The centers for the x and y current subsections will, in

general, be different. For complete generality, the pulse functions,

f, can be different on different subsections and the subsections may

be different sizes. For the present task, we will assume that the

four pulse functions are not a function of the indices k and 9 and

that all subsections have the same &x and Ay.

The simplest choice for the pulse functions would be rectangular

pulses for all four, f, through f,. Then dividing the microstrip

metalization into subsections will simply consist of selecting

adjacent, non-overlapPing rectangles which cover the entire

metalization. A problem with the rectangular current distribution is

that the discontinuity in the current at the edges of the rectangular

subsection results in infinite line charges. The difficulties

encountered in this situation are discussed later.
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A second choice for pulse functions is to use a triangular pulse

in the direction of the current and a rectangular pulse in the other

direction. This would correspond to making f, and f4 triangles while

leaving f, and f, as rectangles. Now the divergence of the current is

merely discontinuous rather than undefined. The electric field at the

edge of the pulse is still singular. However, when weighted by the

same triangle-rectangle pulse functions, the singularity is

integrable. This is one reason why we are interested in the weighted

integral of the electric field over each subsection.

The triangle basis function has been used (43) for two

dimensional open microstrip problems. The triangle-rectangle pulse

function was introduced by Glisson and Wilton (41) as the 'roof-top'

function. In order to use the roof-top function as a basis function,

the subdivision of the metalization into rectangles must be performed

carefully.

First, the triangle portions of the current distributions will

overlap as in Figure 3.5. This provides a piecewise linear

approximation to the current in the direction of current flow. The

rectangle portions of the current distributions must be adjacent, this

results in a step approximation to the current transverse to the

direction of current flow. This must be true of both the x directed

and y directed current. If all subsections possess the same ax,ay

parameters, such an arrangement can be realized by spacing the

rectangle centers on a Ax,&y grid. As will be pointed out next, the

same Ax,Ay grid cannot be used for both the x and y directed currents.

The rectangle function has a width of ax (or Ay) while the
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triangle function has a total width of 2&y (or 2Ax). The x directed

current has a triangle in the x direction, while y directed current

has a triangle in the y direction. We could place the centers of both

x and y directed current subsections on the same grid. However, any

edges in the metalization current expansion will not be clearly

defined. For example, take an edge which is parallel to the x-axis.

Is that edge located where the x directed current (rectangle function)

ends or is it &y/2 further away, where the y directed current

(triangle function) ends? While this is a problem, in the limit, as

ax and Ay go to zero, it will make little difference. We must,

however, turn our attention to a more important problem.

A rectangle of current on a substrate surface, much like a

current element in free space, will generate only an electric field

parallel to the direction of the current at the center. There is no

central electric field generated perpendicular to the direction of the

current. The same is true of the integral of the electric field over

the center of a source subsection. If we use the same grid for the

centers of the x and y directed currents, then x directed current can

not generate any y directed electric field on its own subsection. The

reverse is true for y directed currents. Thus, (given an arbitrarily

large conductivity) a current on a subsection cannot generate any

perpendicular current on a colocated subsection. As will be discussed

later, this kind of subsection arrangement generates incorrect

results.

This problem is resolved in a straight forward manner as

suggested by Glisson and Wilton (41]. Simply offset the grid for one
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current component by &x/2,Ay/2 with respect to the other grid. This

will allow every subsection to generate perpendicularly directed

current on all other subsections. As an added benefit, it will also

cause the edges of the x directed and y directed current expansions to

line up perfectly.

Since there is little additional numerical effort, we will also

investigate a parabolic-rectangle distribution function. Since this

function is smoother than the triangle pulse function, we will be able

to accurately represent the parabolic pulse with fewer waveguide modes

than for the triangular pulse. However, it will be constrained to

zero derivative at the subsection centers, in contrast to the

discontinuous derivative of the triangle function.

Implementation of a Galerkin method of moments solution is now

straightforward. Divide the microstrip into an x and a y directed

grid of subsections as discussed above. The current densities on the

subsections will form a set of dependent variables in a system of

equations. Using (3.4), evaluate the weighted integral of the

electric field on all subsections due to each current. The weighted

integrals of the electric field on the subsections will form the set

of independent variables. The independent variables will now be

related to the dependent variables by an impedance matrix. Pick one

(or more) subsections as a source, set the integral of the electric

field on that subsection equal to one and all the others to zero (zero

tangential electric field on a conductor). Invert the matrix and you

have a solution, the currents on the subsections which give the

desired tangential electric field.
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The selection and characterization of the source will be

discussed next.

3.5 The Source Model

Microstrip circuit inputs and outputs are usually taken at the

edge of the substrate by means of a coaxial cable penetrating the

shielding sidewall at z=h. The coax shield is connected to the

microstrip shield and the coax center conductor is attached to a

microstrip conductor.

The coax aperture can be modeled by a conductor backed

circulating magnetic current. We will assume that the aperture is

small and that the aperture current has negligible effect. When we

compare measured data with calculated data in a later section, we will

find that the contribution from the circulating magnetic current is

important and can be modeled, for practical situations, as a small

fringing capacitance in shunt with the connector.

The primary effect will be the electric current injected by the

center conductor. The center conductor is circular and the microstrip

is a two dimensional surface. Assuming the center conductor is small,

we can model the current injected by the coax center conductor as a

rectangular subsection of surface current directed perpendicularly to

the shielding side wall. This subsection will be called a port

subsection. It is convenient to use the same pulse function as with

the other subsections of the microstrip circuit. This facilitates the

transition from the port subsection to the microstrip subsections.
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The center of the port subsection will be on the shielding sidewall

with only half of the pulse protruding from the sidewall.

Evaluation of the Vi for a port subsection is similar to that of

the microstrip subsections. Images provide us with exactly the same

current distribution on the port subsection as the other subsections,

only now half the current is inside the shield and half is outside.

Thus the integral of (3.3) extends over half of its former domain (the

inside half). Since the integrand is even about the sidewall, the

G(Ax) or G(Ay) (and, in turn, the Vi ) are simply half that of a full

pulse.

In summary, a port subsection is centered on the shielding

sidewall at the location of the coaxial input. Then, since only half

the pulse is inside the shield, each row and column of the impedance

matrix associated with the port subsection is multiplied by one half.

Otherwise, port subsections are the same as all the other subsections.

3.6 Evaluation of the Input Admittance

For the initial portion of this section we will discuss the input

admittance of a one port microstrip circuit. Quantities associated

with that port will be designated by subscript 1. Elements in the

admittance matrix of the entire microstrip system will have double

numerical subscripts.

The input admittance will be evaluated by means of the usual

variational expression (pp. 348-349 of C61)
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11

SEJ3 dS

Since E is zero everywhere except at the port subsection, we need

only consider the current on the port subsection. In the Galerkin

solution outlined above, we represent the source as the weighted

integral of the electric field over the area of the port subsection

set equal to one. The current on the port subsection is proportional

to that same weighting function, the constant of proportionality being

Y,, = J,. Thus, the denominator of the above expression is just Y,,.

The input current is just the input current density multiplied by the

width of the input, aw, usually either Ax or Ay. Thus the input

admittance is

2
Y= - (Y1 1Aw) /Y" = - Y1 1 (Aw)

In a like manner, the transfer admittance between any two ports,

say port a and port b, of an N port circuit may be determined by

Ytran - YabAwaAwb

Thus, the N port admittance matrix of circuit theory is formed

from the elements of the Galerkin admittance matrix. Simply select

all elements which lie at the intersection of any port subsection row

and column. Then multiply each element by both associated port

subsection widths. The array of these elements w' form the Y
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parameter matrix of the N-port. This may then be converted to Z

parameters or S parameters by the usual transformations.

I
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Figure 3.1. The microstrip geometry to oe analyzed is realizea
on a dielectric suDstrate in a printed circuit
fashion and is completely contained in a shielding,
conducting rectangular box.
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y

bi
I

Figure 3.2. The coordinate system used is oriented so as to

emphasize the fact that the fields are represented

as a sum of nomogeneous rectangular waveguiae modes

witt- the waveguide propagating in the z direction.
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X
X, Xo+ XI

~4~LX

4,-A ZI. x,,- X

Figure 3.3. The rectangular (top), triangular (middle) and

piecewise parabolic (bottom) functions used to build

expansion functions for the representation of

surface current on the microstrip metalization.



35

Figure 3.4. The product of a triangle function in one direction
by a rectangle function in the lateral direction
gives a roof-top function which will be used as an
expansion function.

Figure 3.5. Two roof-top functions placed on overlapping

rectangles give a piecewise linear approximation to

the current in the direction of current flow.

Additional roof-top functions placed side by side

will provide a step approximation to the surface

current in the direction lateral to current flow.
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Chapter 4

EFFICIENT CALCULATION OF THE IMPEDANCE MATRIX ELEMENTS

The double summations for the impedance matrix elements require

thousands of terms before accurate results can be obtained. This

section describes a means of reorganizing the terms in the summation

which results ir a significant reduction of the time required to

evaluate the matrix elements.

In addition, the summation is split into two stages. The first

stage depends only on the shielding and substrate geometry. As long

as the shield and the substrate remain unchanged, the first stage of

the summation need not be recalculated. The number of floating point

operations required for the first stage iL proportional to the number

of included modes and inversely proportional to the product of the x

and y axis resolution (Ax and Ay).

The second stage of the summation is dependent only on the

specific microstrip circuit geometry to be analyzed. The number of

floating point operations required for each element of the system

matrix is inversely proportional to the product of the x and y axis

resolution (Ax and Ay) and is independent of the number of included

modes. The microstrip circuit can be changed and only the second

stage summation need be repeated.

Typical analyses have demonstrated a twenty fold improvement in

speed for the complete analysis. If we ignore the circuit independent

first stage and since the second stage of the summation is independent

of the number of modes, we will realize an arbitrarily large relative

improvement when including an Arbitrarily large number of modes.
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The summation is reorganized by restricting the centers of Ill

subsections to a ax, ay grid and taking advantage of the periodicity

of the sine and cosine functions. This allows the summation, which

goes to infinity, to be reorganized into two summations. The final

summation, which is circuit dependent and contains the sine and cosine

functions, is taken over a specific finite range. This summation is

the second stage referred to above. The terms of this summation

themselves include summations which are taken over an infinite range.

These infinite summations, which are terminated at some convenient

point, form the circuit independent first stage summation.

4.1 Initial Identities Used in the Summation Reorganization

We wish to rewrite a double summation which includes sine and

cosine functions so as to take advantage of the periodicities of the

sine and cosine. Before approaching that problem directly, we will

investigate rewriting some single summations. The following

identities will be useful.
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sin(mnm,/M) = (-I1)imosin((iMm)lTf%/M) = -(-1)iMosin((iM-m)1rm,0 /M)

cos(mnmo,/M) =(-I) im OCOS(iM+m)gm0/M) = (-I) im ocos((iM-m)1Tm0 /M)

sin(iwrm0 ) = 0 cos(inrmo) =(-I.) im

sin ( (+1/2)rm, 0 , mo, even

= (~)(mO)/2,m 0 odd

cos((i+1/2lTm,,) =(- 1 )r%/2, m, even

0, m0 Odd

The above identities can be verified by inspection or by

application of the trigonometric identities for the sum of angles.

The above identities applied to the three summations with which

we must deal yield the following results.

00 00

I cos(mTI%/M)cos~mltm,1 M)f(m) I ( CI)i(mO~ml)f(iM) +
M=O 1=0

00

+ (In0 and m, even) I (_..)(m 0+ml)/2 f ((i+1/2)M) +
1 =0

M/2-1 00
+ I cos(mItm 0/M)cos(miVm 1 /M) I F.( )i(mll+rnl)f(iM+n) +

m=1 i0O

+ (-I) )1I (MO +m, ) f (i1M-m)]
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0

I sin(mnm,/M)sin(mTrm,/M)f(m) =

m=O

0

= (mo and m. odd) I (- 1 ) (mo+ml ) /2 f((i+1/2)M) +

i=O

M/2-1 00
+ I sin(muTmo/M)sin(mrm,/M) I [(-1)i(mr+ml)f(iM+m) +

m=1 i=0

+ (-I)i (mo+m 1 )f(i1M-m)

00

I sin(mum0 /M)cos(mum,/M)f(m) =

m=O

00

= (mo odd and m, even) 1 (-I1)(m,+m,-1)/2 f((i+1/2)M) +
i=O

M/2-1 00
+ I sin(mrm,M)cos(mim,/M) I [(-1)i (mo+ml )f(iM+m) -

m=1 i=O

- (-I )iI (mo+m )f( i, M-m)]

where m,i = summation indices.

ii = i + 1.

o,m1 ,M = constant integers.

f(m) = a function of the summation index, m.

In the above equations, any summation preceded by a statement in

parentheses is performed only when the statement is true.

4.2 Rewriting the Sunation

The expressions for the single summations of the previous section
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may be applied twice to evaluate desired double summations. We have

three distinct cases to evaluate:

1) The x directed electric field due to x

directed current.

2) The x directed electric field due to y

directed current.

3) The y directed electric field due to y

directed current.

The fourth case, y directed electric field due to x directed

current is the same as case 2 above.

We will restrict the centers of all subsections to a ax, Ay grid

with M AX divisions from x=O to x=a along the x axis and N ay

divisions from y=O to y=b along the y axis. Placing the center of the

source subsection at (xo,y o ) and the center of the field subsection at

(x,,y,) we will define m , mi, no  and n, with the following relations.

x./a = mo/M, x,/a = m,/M, yo/b = n,/N, y1/b = n,/N

We will evaluate each of the three cases in turn. In each case,

the original summation will be written followed by the reorganized

summation. The symbols used in the f(m,n) functions have been defined

oreviously.
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CASE 1) J*4E

Ex I cos~mlTr% /M)cos(mTm,/M) I sin(nurn0 /N)sin(nnrn1/N)fxx(m,n)
M=O n=1

where f(ml. n) = G, (&x )G, (,&y) N' I + N' 2TJ

andmin, in,, no) ni are all even.

N12-1 0
Ex I sin(nlTno/N)sin(n~rn,/N) I (FXX(jN+n)+Fxx(jN-n))

n=1 j=O

F~(n) = [xxuiM,n+(-1(inQ+1)/ 2 fxx((i+1/2)Mtn)] +
i=O

M/2-1 0
+ I cos(mirm0/M)cos(mirm1/M) I (fxxiM+m,n)+fxxiM-m,n))

m=1 i=O

CASE 2) J y *E

00 00
Ex I sin(inri 0mo cos(mumin Ml I co~vmsnn~,mfymn

m=1 n=1

where f (m,n) = G,(e&x)G 4(A&yJN 1N,[Z1 r - Zjrm
xy n n

and m,0, no are odd and m,1, n, are even.

N/2-1 0
Ex I cos(nyrno/N)sin(nlrn, /N) I ( -I)J ( F xy(jN+n)+F xy(j, N-n))

n=1 j=O

00

F~~(n) (M~)iO+Ml1)12 S f y(i+1/2)Min) +
1=O

M/2-1 0
+ I sin(mlTin0/M)cos(im,/M) 1; (-1)1(fx(iM+m,n)+fxy(i M-in,n))

m= Li=Oy



Efficient Calculation 42

CASE 3) Jy 4 Ey

00 00

y= ) sin(mmo/M)sin(mrm,/M) I cos(nuno/N)cos(nTn,/N)fyy(mn)
m=1 n=O

where f (m,n) = G,(Ax)G 4 (Ay)[N T En + N'jTmnI

yy 2mn 1m
and m, mi, no , n, are all odd.

0N/2-1Ey Fyy(jN) + I cos(niino/N)cos(nrn,/N) 1 (Fyy(jN+n)+FyyjN-n)
j=0 n=1 j=O

00

Fyy(n) 1 ( -) ( mo +m,)/2 fyy((i+1/2)M,n) +
i=O

M/2-1 00

+ I sin(mum0 /M)sin(mum,/M) I (f yy(iM+m,n)+fyy(iM-m,n))

m=1 i=O

In the above equations, the summations over i and j represent the

first stage and are truncated at some convenient point. The integer

i equals i+1 and j, equals j+1. The first stage summations need be

done only once for a given substrate and shielding geometry with the

results stored in memory. The summations over m and n are the second

stage summations. The second stage needs to be executed each time

metalization is added to the circuit.

The above equations are for the tangential E field. For a

Galerkin technique, we need the weighted integral of the E field.

This is realized by squaring each G(Ax) and G(Ay) function for cases I

and 3. Case 2 is modified by multipling fxy by G,(Ax) and G2 (Ay).

4.3 Application of the Discrete Fourier Transform

A two-dimensional discrete Fourier transform implemented using an
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efficient algorithm could realize the second stage summation. To do

this, select a single source point. (One could also oroceed by

selecting a single field point.) This single point will be viewed as

a fixed constant. The sines and cosines which are a function of the

fixed point, combined with the first stage summations now form the

Fourier coefficients of a sine or cosine series in two dimensions.

The series extends from m=O to M/2-1 and from n=O to N/2-1.

To simply apply a discrete Fourier transform, the series should

be extended in an odd fashion for a sine series and in an even fashion

for a cosine series with the resulting summation going from m=O to M-1

and n=O to N-i. The second stage of the summation can now be realized

by the application of a discrete Fourier transform. The transform is

with respect to the spectral variables, m and n, to yield a sequence

dependent on the spatial variables, m, and n, for a given source

subsection (mo, no). A pair of two dimensional transforms (one for x

directed fields and one for y directed fields) must be performed for

each subsection. This number can be reduced by invoking reciprocity.

Multiple application (twice for each possible source subsection)

of the discrete Fourier transform provides us with the system matrix

elements for all possible field subsections. Since a typical circuit

will use only a small portion of all possible field subsections, the

transform provides a great deal of unneeded information. Even for

required field subsections, redundant information is calculated by the

transform due to the symmetry of the system matrix. Thus a transform

approach to the second stage may actually be less efficient than a

direct summation. However, a distinct opportunity lies in the
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possibility of implementing a discrete Fourier transform algorithm

which does not calculate unneeded elements and takes advantage of the

symmetry (even or odd) of the Fourier coefficients. Such an algorithm

would have the potential of significantly improving the efficiency of

the second stage calculation. This will be the subject of future

research.

It should be noted that the application of a discrete Fourier

transform does not imply any approximation. In fact, in the limit, as

the first stage summation is carried to an infinte number of terms,

the transform implementation of the second stage summation provides an

exact result.

The FFT algorithm has been applied previously in the calculation

of static microstrip capacitance £423.
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Chapter 5

SOFTWARE DESIGN

To date, most numerical electromagnetic software (often referred

to as 'code') has been written in FORTRAN, with a few programs written

in BASIC. All software used in this work has been written in Pascal,

in part, as an experiment to determine the strengths and weaknesses of

Pascal in a numerical electromagnetics environment.

The initial, and most glaring, shortcoming of Pascal is the lack

of an intrinsic complex data type. For most general programming

tasks, this is of no consequence. However, extensive use of a complex

data type is usually required in electromagnetics. BASIC, which also

lacks a complex data type, has been used in complex arithmetic. While

the programs often work very well, the source listing can be difficult

to follow. Thus, the ease with which the software can be modified,

maintained or ported to another system is compromised.

With Pascal, new data types can be defined. For example one

could define the COMPLEX data type as a RECORD whose first component

is a floating point number which we can call RE, and whose second

component is also a floating point number which we could call IM.

Then, if we declare a variable, EREL, as COMPLEX, it will have both a

real and an imaginary part. If we wish to refer to the complex value,

we would use EREL. To refer to the real part, we use EREL.RE, while

EREL.IM refers to the imagi dry part.

To perform complex manipulations, one now must write COMPLEX

procedures (essentially the same thing as subroutines in FORTRAN, only

the word CALL is not needed to invoke the procedure). For example,
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one could write a complex multiply procedure which would be invoked by

writing CMULT(A,BC), where A, B and C are COMPLEX data types. A

disadvantage here is that complicated equations must now be written as

a series of procedure references, making it difficult to compare the

source with the original equation. This, then is a real difficulty

with Pascal. In fact, in applications requiring complex arithmetic

which can not be vectorized (as described later) and in which the

subsequently described advantages of Pascal are not overwhelming,

FORTRAN is likely to be the better language.

This difficulty with Pascal could be eased somewhat if one could

write COMPLEX functions. While this is allowed in some versions of

Pascal, it is not standard and should be avoided if it is desired to

make the software portable from system to system. This brings us to

an advantage of Pascal. Standard P-ascal is precisely and clearly

defined. If one stays with the standard structures, plus, possibly a

few fairly standard extensions, a highly portable program can result.

If most of the software is numerical in nature, this portability does

not represent a strong advantage over FORTRAN as FORTRAN can be highly

portable as well. However, it is the author's experience that a

numerically intensive program, once reduced to practice as a quality

engineering computer aided design program, will have two to five times

as much source allocated to user interface as it does to the original

number crunching. In such a situation, FORTRAN has very poor

portablity compared to Pascal. The reason is that there are about a

dozen different 'standard' FORTRANs, each standard having many

implementations, with each implementation having a wealth of
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extensions. Frequently, the extensions are too tempting to pass up,

the result being loss of portablity even if all systems were to use

the same FORTRAN standard.

A second advantage of Pascal is the wealth of data types which

are both built in and which can be constructed by the user. This has

been used in this work in relation to the vectorization of the

software. By vectorization, we mean that data is organized in long

vectors, the longer, the better. The advantage here is that an array

processing or parallel processing computer can very quickly manipulate

long vectors. Thus, rather than, for example, placing a multiply

followed by an add ( D(I) = A(I)*B(I) + CI) ) in a loop and executing

the loop N times, we would do all N multiplies (perhaps in parallel),

then all N adds. In short, rather than multiplying scalars, one at a

time, we would be multiplying entire vectors all at once.

Thus our problem reduces to specifying a vector data type and

writing procedures to manipulate (multiply, add, etc.) that data type.

Note that now, Pascal and FORTRAN are at equal disadvantage. In both

cases, we must now express equations as sequences of procedure calls.

However, Pascal has the advantage of being able to create a more

flexible (and portable) vector data type as described next.

The vector data type designed for this work is a RECORD. The

record has three parts. The first part is an INTEGER which specifies

the length of the vector. The second and third parts are pointers. A

pointer is simply space to store a memory address. The memory

location thus pointed to will be the beginning of an array of floating

point numbers which will form the vector. The first pointer in the
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record points to the real vector, while the second pointer points to

the imaginary part. The real and imaginary vectors are referred to as

dynamic arrays, that is, space for the arrays is allocated or

deallocated during run time, not at compile time. The pointers (which

point to the vectors) are initialized to the standard value NIL

(usually 0) which means that no memory is allocated for the array.

When necessary, the software allocates memory for the vectors,

manipulates the vectors and deallocates the memory when finished,

freeing the memory for other uses.

An important advantage here, is that if there is no need for the

imaginary (or real) part in a particular problem, the imaginary (or

real part) takes no memory. In addition, the vector procedures are

easily written so that the additional time required for a full complex

manipulation is not used when the arguments have no imaginary (or

real) parts. Thus, in the problem considered in this work, the same

software can perform a lossless or lossy analysis with little

compromise.

Another advantage of Pascal which will be only briefly mentioned

is the structure and readability of the software. The group of

programming techniques generically referred to as 'structured

programming' are well established in the programming community.

Ignorance of such structured techniques is extremely hazardous.

Pascal not only makes possible many structured techniques (as compared

with FORTRAN), it encourages their use. Pascal also tends to be more

readable than FORTRAN. This is important in the software maintenance

area, especially if a programmer other than the orginal author is to
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maintain the software. As one example of readability, consider an

example FORTRAN variable: NXP. What does it do? The Pascal

programmer would be more likely to write: Num_x_ports. Now, even out

of context, we have some idea of what the variable does.

In the course of this work, we have only evaluated Pascal as an

alternative to FORTRAN for numerical electromagnetic software. In the

future, we also plan to evaluate C to find its advantages and

disadvantages. Our increased interest in C is due to its recently

increased availablity on personal computers.

At this point, we would recommend FORTRAN over Pascal if:

1) The programmer has an extensive installed base of

FORTRAN softwar'e.

2) If the software will be predominately numerical in

nature (little user interface or input/output).

3) The nature of the task does not justify or conform

easily to vectorization.

4) The software will not be ported to different systems

(given a significant user interface).

5) Maintenance/update requirements are minimal.

We would recommend Pascal over FORTRAN if:

1) Maintainability and portability are important issues.

2) The specific problem can take advantage of advanced

data structures (such as is the case with
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vectorization).

3) There is going to be significant input/output or

user interface.

4) The size of the task justifies the additional work

required to develop a complex (vector) data type.

The above are, of course, subjective guidelines. It is up to the

indvidual programmer faced with a specific task to evaluate the

importance of each guideline and to determine a weight for each

guideline. In fact, given a specific problem, there are quite likely

to be other factors which must also enter the objective function.

One word of caution, beware advice stating that one language (or

anything else) is better than another. 'Better' must always be

measured with respect to the task at hand. Advice which does not take

that into consideration should be treated carefully.
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Chapter 6

SOFTWARE STRUCTURE

Several programs were written to assist in the verification of

the electromagnetic analysis. All the programs were written in Pascal

on an IBM-PC. At no time was the PC found to be lacking in memory for

the compiled source (limited to 64 K by the particular compiler being

used). The upper limit on data array size was reached several times.

With all calculations performed in double precision and with the

matrices involved being purely imaginary (no real part), it was found

that a circuit involving somewhat less than 200 subsections could be

handled on an IBM-PC with 640 K of memory.

After developing the complex vector data type, a set of

procedures were written to manipulate the vectors. These procedures

include add, subtract, multiply, divide, trig and inverse trig

functions, square root, dot product, change sign, conjugate and move.

In addition, procedures were written to perform scalar-vector

operations such as to multiply each element of a vector by a scalar.

Another procedure was written to do a pivot (multiply a vector by a

scalar and add to a second vector). Finally, procedures were written

to allocate and deallocate memory for the vectors as required.

A program was then written to validate the procedures. This

program allows the user to exercise any of the procedures and to veiw

the results. Validating the procedures during actual use was

unacceptable.

One problem to which the programmer should give careful attention

is that the vectors passed to these routines may not be distinct from
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each other. For example, if we want to multiply vector A by vector B

and place the result back into vector A, the multiply routine should

not use vector A for intermediate results!

A second common problem is a corrupted heap. The 'heap' is the

area of memory assigned to the storage of the dynamic variables (in

this case, the vectors). The pointers to vectors must be initialized

to NIL (nothing allocated) by the programmer, this is not done by the

compiler. If a pointer is set to NIL, the complex vector procedures

have been designed to treat the vector as all zeros. If one forgets

to initialize a pointer and starts to use it, the pointer is pointing

to some random place in memory and the system will usually crash.

This can be a difficult problem to isolate.

A third problem occurs when one forgets to deallocate a vector,

say, a temporary vector used for intermediate results. Each time the

procedure using this temporary vector is called, it will allocate a

new area of the heap for the vector. After enough procedure calls,

the heap will become full (stack-heap collision) and the program will

abort. This is a particularly insidious problem on systems with

virtual memory. With virtual memory, the heap never becomes full.

The only thing that will happen is that, at some point, the system

must initiate substantial swapping and system response time will slow

drastically.

As mentioned above, all the complex vector procedures perform

only the necessary calculations. If we have two real vectors to

multiply, the multiplies involving the imaginary part are not

performed. A vector which is not allocated is treated as zero.
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In addition to the vector data type, a complex matrix data type

was developed. The matrix data type is essentially a one dimension

array with each element of the array formed by a complex vector data

type. The complex vectors form the rows of the matrix. A set of

procedures was also written to manipulate the matrix data type much as

was done for the vector data type. Also a program was written to

exercise the procedures for validation purposes.

The initial analysis program was used to calculate the current

resulting from tru-cating the modal series. It was later modified to

include electric field. The vector length for this program was the

length of the summation. Each element of a vector represented one

term of the summation. This program was set up in an 'experimental'

format, that is, it was designed so that switching between various

modes of analysis (e.g., triangle versus parabolic expansion

functions) could be accomplished readily. Fast execution time was a

secondary consideration.

The second analysis program performed microstrip analysis. It

was written much as the above program with each element of the vector

representing one term of the summation. Elements of the system matrix

were calculated one at a time. As with the other programs described

here, it was written in an experimental format.

A third analysis program also performed microstrip analysis. It

was written in order to check the results of the other microstrip

analysis program. Small discrepancies were found which were traced to

a precision problem in the calculation of Y for high order modes.

This program was written with the vector length equal to the number of
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subsections subdividing the microstrip geometry. Each term of the

summation was calculated for the entire matrix before proceeding to

the next term.

A fourth analysis program implemented the first and second stage

summation described in the chapter on efficient calculations. All the

analysis programs give identical results.

Finally, a program was written to allow a user to graphically

define a microstrip circuit geometry with the aid of a mouse. A mouse

is a small hand sized box with buttons on the top. It rests on the

desk top (or on a special pad) and is connected to the computer. As

the mouse is moved, the cursor on the computer screen is moved. By

pressing a button on the mouse, a pop-up menu appears on the screen.

The menu may contain options like 'X directed subsection'. The user

moves the cursor (by moving the mouse) to the desired option. By

pressing the button a second time, the option is selected and the

menu disappears. If 'X directed subsection' were selected, a mouse

button would now be defined as an X directed subsection button. That

is, each time it is pressed, a subsection of X directed current would

be laid down at the present location of the cursor.

In this manner, entire microstrip geometries can De specified.

In fact, the PC is capable of capturing very complicated circuit

geometries, much more complicated than can actually be analyzed on the

PC. This suggests that the PC would make a good 'front end' for a

larger system. The geometry captured by the PC could be up-loaded to

a large system for analysis. The large system need not be tied up

with data capture chores.
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Figure 6.1 shows an interdigitated microstrip capacitor whose

geometry was captured using an IBM-PC. Figure 6.2 shows a magnified

view of the same capacitor. The fingers of the capacitor have only x

directed current (horizontal lines) while much of the rest of the

capacitor is composed of subsections which allow both x and y directed

current (both horizontal and vertical lines). The size of the circuit

(about 500 subsections) makes it far too large for a PC analysis while

it is just the right size for many larger systems.
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Figure 6.1. Sample graphical output of the microstrip geometry
capture program. Horizontal lines indicate areas
wh~ere x directedl current is allowed wh~ile vertical
lines indlicate alloweas y dlirected current. The
structure is an interaigitated capacitor.
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Chapter 7

RESULTS

To gain confidence in the analysis, several problems were

investigated in detail. First, the fields generated by individual

current patches were calculated and plotted. Next, an open circuited

microstrip stub geometry was selected for analysis. With reasonable

results here, a second stub geometry was selected, constructed and

measured. The measurements provided excellent agreement with the

analysis once an estimate of the fringing capacitance due to the

circular coaxial aperture formed by the input SMA connector had been

included. To further check the validity, a notch was cut in the stub

midway along its length. Again the agreement between measured and

calculated data was excellent.

Details of the measurements (performed using an Hewlett Packard

8510 automated network analyzer) and the analyses (all of which were

performed on an IBM-PC with numeric coprocessor) will be presented

next.

7.1 The Convolved Green's Function

The fields generated by a point source represent the Green's

function for a given problem. In this section we will present

examples of the fields due to small rectangular patches of surface

current. These fields can be viewed as the Green's function convolved

with the surface current distribution which generated the field. We

do not calculate the Green's function itself.
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The analysis calculates the Vi, the modal coefficients, for the

desired current distribution. The resulting current and fields are

then calculated by the summations in section 3.1. The summations are

truncated after a specified number of modes. Modes, numbered by m and

n, are included if m is less than an upper limit and n is less than a

second upper limit. The upper limits are selected such that a

dimension with finer geometries will be represented with more modes.

For example, if Ax/A is half of Ay/B, then the upper limit for m will

be twice the upper limit for n.

Analyses which selected only the lowest order (in terms of cutoff

frequency) modes were also effected. For a given number of modes,

there was little difference in the resulting fields. This approach

required more time (to find only the lowest modes) and the other

technique is more adaptable to the efficient calculation algorithms

described previously. Thus, the approach ot finding only the lowest

order modes was not pursued further.

The geometry of the current patch to be analyzed is shown in

Figure 7.1 for x directed current and Figure 7.2 for y directed

current. In all subsequent plots we will evaluate the field due to

the current patch along a cross section passing through the center of

the patch and parallel to the x axis.

Most of the analyses deal with the roof-top function, Figure 3.3.

The current resulting from truncating the number of modes in the

summation is shown in Figure 7.3 for a roof-top current distribution

with the current directed in the x direction. Since the roof-top

function has a triangle dependence in the direction of current flow,
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we see an approximation to the triangle function. The three plots

show the result of truncating the summation at 200, 1000 and 5000

modes respectively. Figure 7.4 shows the detail of the transition

into the triangle region for a 5000 mode calculation.

The x directed electric field due to the x directed current,

Figure 7.5, shows the increasing singularity of the field at points

where the derivative of the triangular current density is

discontinuous. This singularity suggests why the weighted integral of

the electric field (Galerkin technique) is desired as opposed to point

matching at the center of the patch. Again, the figure shows the

effect of changing the included number of modes.

The final figure for x directed current, Figure 7.6, shows the y

directed electric field along the same cross section. As the number

of included modes goes to infinity, these fields should go to zero.

This is indeed what appears to be happening. The peak field goes from

just under 4 volts per meter for 200 modes to about 0.3 volts per

meter for 5000 modes.

The next figures concern y directed current. Since we will be

taking the same cross section parallel to the x axis, we will see the

rectangle dependence in the current density. This is shown in Figure

7.7 for a range of included modes. Note that while the approximation

improves for an increasing number of modes, the magnitude of the peak

ripple (sidelobe) shows little improvement. In fact, the peak ripple

corresponds closely to the classic 13 dB first sidelobe of the

sin(x)/x function. Returning to the transition into the triangle

region of the roof-top pulse (Figure 7.4), we note that the peak
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ripple is about 26 dB down from the peak current. This is similar to

the peak sidelobe of the square of the sin(x)/x function. We will

return to this topic when we discuss the parabolic pulse function.

Figure 7.8 looks at the y directed electric field. In the

vicinity of the patch this field shows a large and increasing value as

we increase the number of modes. What we are seeing is a broadside

view of the singularity in the electric field at the peak of the

triangle noted earlier. As the number of modes is increased, the

singularity is more closely approximated. Again, this is why we are

interested in a weighted integral of the electric field. Once outside

the patch and away from the singularity, the electric field becomes

better behaved.

The x directed electric field due to y directed current should go

to zero along this cross section as the number of modes goes to

infinity. Figure 7.9 illustrates the trend.

As mentioned above, for a given number of modes the peak ripple

is about 13 dB less for a triangle than it is for the rectangle pulse.

Since the triangle is the convolution of a rectangle with another

rectangle, one might try convolving a triangle with a rectangle to get

a piecewise parabolic pulse. The piecewise parabolic pulse might then

have peak ripple down an additional 13 dB for a total of 39 dB down.

The advantage being realized here is that the parabolic pulse could be

more accurately approximated with fewer mudes.

Figure 7.10 shows a parabolic x directed current pulse

approximated with 1000 modes. A rectangular dependence is used in the

y direction. The x and y directed electric fields are also shown.
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At this scale no ripple is even seen in the current pulse; it is

well approximated with 1000 modes. Thus we might be tempted to

substitute the parabolic pulse for the triangle pulse in our roof-top

functions. Since the parabolic pulse can be represented with fewer

modes, we might expect a more efficient and more accurate analysis to

result. This was attempted and while the resulting analysis was more

efficient, it was not more accurate. The reason for this is that the

parabolic pulse is restricted to zero derivative at the center and at

the ends. Since the actual current distribution on a microstrip

circuit rarely has zero derivative at the centers of whatever crll

subsections we might choose, the parabolic pulse does not represent the

actual current distribution as well as the piecewise linear

approximation provided by the triangle function. For this reason, the

parabolic pulse function was not investigated further.

7.2 Initial Open Circuited Microstrip Stub Analysis

The dimensions selected for this and the other analysis are

comparable to dimensions usually selected for "scaled' circuits.

Since, in this case, we have nothing from which to scale, referring to

these structures as scaled circuits is not appropriate. However, the

reason that these dimensions (on the order of centimeters) were chosen

is the same reason that the dimensions of scaled circuits are chosen:

ease of construction and measurement. While the circuit in this

section was not actually built, several others were, Microstrip

circuits designed for actual applications typically have dimensions on
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the order of 1 /10 th to I/iO0th of the dimensions given here. Thus

when attempting to determine the range of the analysis' validity for

actual microstrip design, the frequencies which follow should be

multiplied by a factor of 10 to 100.

rhe first circuit analysis was a microstrip open circuited stub.

Dimensions were set at 1.0 cm wide and 2.81 cm long. It was analyzed

inside a box 4.0 cm long, 2.0 cm wide and 5.0 cm high. The 1.0 cm

thick substrate was specified with a dielectric constant of 10.0. The

purpose of the analysis was to check for reasonable analysis results

dnd to take the analysis high enough in frequency so that it would

break down.

The input impedance of the structure was calculated over a range

from 50 to 4000 MHz with the results presented in Figure 7.11. The

stub input impedance appears to be the classical cotangent function.

Closer inspection shows that the impedance plot is not symmetrical

about zero, especially at the higher frequencies. This is explained,

at least in part, by the fringing capacitance between the base of the

stuD and the adjacent sidewall.

Above 3.0 GHz, we seem to have taken the analysis past a point of

failure. However, when the analysis is repeated over that ranqe with

a step of 10 MHz, rather than 50 MHz, we see that reasonable data is

still obtained, made reasonable by the observation that at 3.0 GHz,

the substrate is electrically about one half wavelength thick. What

we are 'eeing, in Figure 7.12, is a spectrum of hiqher order

microstrip modes. The 50 MHz step size was insotffticient to resolve

the hiqher order modes.
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Caution should be exercised here as the higher order modes

predicted by the analysis have not been checked for validity by

measurements. Several other stubs have been constructed and checked

for accuracy as will be described in the next several sections.

7.3 Microstrip Open Circuited Stub Measurements

A second microstrip stub was built and measured as well as

analyzed. This stub was 2.54 cm wide and 10 cm long contained in a

box 13.0 cm long, 7.9 cm wide and 5.0 cm high. To ease fabrication

requirements, air was used as a dielectric throuqhout the box.

Two measurements were made using a Hewlett Packard 8510

automated network analyzer. The first measurement wai of the stub

itself. Since the network analyzer was calibrated usinq standards

external to the circuit, the measurement reference pLine was just

outside the box. In order to transfer the reference plane just inside

the box, the end of the input connector was shorted to the adjacent

wall of the box with a short copper strap and a second measurement was

taken. [he phase of this measurement was, in effect, the phase length

of the input connector.

In both cases, the magnitude and angle of the reflection

coefficient was measured. The magnitude information (which was close

to 1.0) was not used. to use the angle information, the phase length

of the connector was subtracted out. F rom the internal short c i rciiit

meosurement, it was determined that the connector phase length was

1.60 +/ 0.05 de(grees per 100 MHz. It was later found that r phase
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length of 3.28 +/- 0.05 degrees per 100 MHz provided a better fit.

The difference of 0.32 degrees per 100 MHz can be attributed to the

small inductance in the shorting copper strap. After the connector

phase length was subtracted out, the phase information was converted

to reactance and plotted.

The initial comparison between measured and calculated data is

shown in Figure 7.13. The difference between measured and calculated

increases with increasing frequency and at high impedance levels. The

direction of the discrepancy suggests that a shunt capacitance at the

base of the stub is unaccounted for in the analysis. This shunt

capacitance can be attributed to the fringing capacitance of the

circular coaxial aperture formed by the input SMA connector.

A single frequency was selected, 1.5 GHz, and the required shunt

capacitance calculated, 0.56 pF. This capacitance was then placed in

shunt with the calculated stub input impedance at all frequencies and

replotted. The result is shown in Figure 7.14. The agreement is

substantially improved, especially below 2.3 GHz. The discrepancy

above 2.3 GHz may be due, in part, to what may be viewed as the input

connector fringing capacitance increasing with frequency. Several

other possibilities are explored next.

7.4 Sources of Error at High Frequencies

After the above measurements had been made, it was found that the

stub (which was formed of copper tape, cut to size with a razor knife)

was nearly a millimeter longer than 10.0 cm. To check the sensitivity
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of the calculations to a small change of length, the stub was then

reanalyzed with a length 10.1 cm. The best fit with measured data was

obtained with a connector phase length of 2.94 degrees per 100 MHz and

fringing capacitance of 0.67 pF. Note that the calculated data,

Figure 7.15, now fits well to 3.5 GHz. The changes in the best fit

connector phase length and connector fringing capacitance suggest that

the evaluation of these quantities is strongly dependent on the

precise dimensions of the microstrip circuit.

A second potential source of error is in the accuracy of the

analysis itself. To check this possibility, two additional analyses

were performed. The first simply increased the number of subsections.

The original analysis subdivided the stub into 5 by 9 subsections for

x directed current and nearly an equal number for y directed current.

A second analysis subdivided the stub into 7 by 14 subsections for x

directed current. The results are shown in Figure 7.17. The crosses

indicate the selected frequencies at which the more detailed analysis

was performed. Due to the time required to calculate each point

(several hours on an IBM-PC), the analysis was not performed at all

frequencies. As can be seen, there is some difference at higher

frequencies. The difference is in the right direction to account for

some of the observed discrepancies.

Another possibility for error is that an insufficient number of

waveguide modes were included to properly represent the roof-top

current distribution on each subsection. To check this possibility,

the number of included modes was increased by a factor of 25. This

was done by changing the upper limit on the first stage summation (see
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the section on efficient computation) from one term (or 'cycle') to

five terms. The number of included modes goes with the square of that

upper limit. This particular analysis was for a notched stub

(discussed in a subsequent section), but the result still holds.

Figure 7.17 shows the two analyses and we find almost no difference

between the two. Thus the number of included modes appears to be a

second order factor.

A check for another kind of problem was made using this geometry..

It was suspected that there might be a numerical problem at the

resonant frequency of the empty (no microstrip circuit) box. With the

two largest dimensions of 13.33 cm by 7.257 cm, the resonant frequency

is 2351.79998 MHz. An analysis was performed from 2350.8 to 2353.55

every 50 KHz with no numerical problem becoming evident. The

resulting input impedance was on the order of 276 Ohms and was a

smooth function of frequency.

As mentioned in a previous section, we are using dimensions

corresponding to a scaled circuit. Thus, for practical micrcstrip

design, the frequency range for valid analysis will be much larger

than that cited for the above analysis.

7.5 Microstrip Stub Current Distributions

The current distribution on the microstrip stub was plotted at a

number of frequencies. The current distribution is shown conceptually

in Figure 7.18. The source current is injected (by a coaxial

connector penetrating the shielding box) into the base of the stub.
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From that point, the current immediately flows out to the edge of the

microstrip stub. Now, with most of the current concentrated on the

edge of the stub, the current flows down to the end of the stub,

slowly and smoothly tapering off to zero as it reaches the end of the

stub. Since the current distribution is symmetrical about the center

line of the stub, the subsequent plots will show only the lower half

of the stub. To assist orientation, the edge of the microstrip stub

is also outlined in the plots.

The current distribution is indicated on the plots by a set of

arrows. The length of the arrow indicates the magnitude of the

current. There is one arrow per subsection. Since a subsection will

have either x or y (and not both) directed current, each arrow is

directed in either the x or the y direction. Since the x directed

subsections are offset by ax/2 and Ay/2 with respect to the y directed

subsections, we will find the arrows have the same offset. Any arrow

which is less than four printer dots long is left without an

arrowhead. All subsections are plotted with at least one dot, no

matter how small their current.

Figure 7.19 shows the current distributions for frequencies from

500 MHz to 3000 MHz. At 500 MHz, we see the current injected into the

center of the stub in the upper left corner of the plot. The current

then proceeds down (and up, not shown due to symmetry) to the edge of

the microstrip stub. Then the current propagates along the edge of

the stub, slowly and smoothly tapering off to zero as it reaches the

end of the stub. At this frequency, the stub is a little less than

1 /8 th of a wavelength long.
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There is an unusual lateral current near the source. It is

believed that this current is a numerical artifact due to the modeling

of the source.

At 1000 MHz, we see much the same distribution except that the

current does not go quite as smoothly to zero. This appears to be the

result of the increasing influence of fringing capacitance off the end

of the stub. The current does actually go to zero at the exact end of

the stub because we use a triangle dependence for the current density

in the direction of current flow and the end of the triangle is at the

end of the stub.

At 1500 MHz, the stub is now a little over one half wavelength

long. Note that on the edge of the stub, the current reversal occurs

near the corner of the stub while on the interior of the stub, the

current reversal occurs a full subsection further down the length of

the stub.

At 2000 MHz, the current reversal has moved down the length of

the stub and the current reversal now takes place at about the same

point on both the edge and the interior of the stub.

At 2500 MHz, the stub is now very close to one wavelength long.

The first current reversal actually occurs before the current reaches

the edge of the stub. The second current reversal again occurs sooner

on the edge of the stub than in the interior. Also note that the

effect of fringing capacitance off the end of the stub is becoming

more pronounced.

At 3000 MHz, the effect of fringing capacitance is even more

pronounced. An additional effect is also starting to appear at this
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point. The lateral current at the end of the stub is starting to

grow. At higher frequencies, the current will actually wrap around

the corner of the stub, further increasing the electrical length of

the stub.

The first current reversal on the edge of the stub has now

rounded the first corner. The first current reversal on the interior

of the stub occurs further down than on the edge. Surprisingly, the

second current reversal is aligned across the entire width of the

stub.

Figure 7.20 shows the current distributions of the same stub now

analyzed with 7 by 14 (x directed) subsections instead of the previous

5 by 9 subsections. The distributions are essentially the same as

above only represented in finer detail.

7.6 Notched Stub Measurement

The microstrip stub of the previous section was modified by

cutting a notch midway along the length of the stub. The notch was

2.0 cm long and 0.5 cm deep, changing the width of the line from 2.54

cm to 1.54 cm. Both the stub and a short circuit were then measured.

The internal short provided an estimate of 3.54 +/- 0.05 degrees/100

MHz for the phase length of the connector. The best fit between

calculated and measured data occurred with a connector phase length of

3.24 +/- 0.05 degrees/lOO MHz indicating a shorting strap inductance

of 0.30 degrees/1OO MHz. This agrees well with the results from the

previous stub (3.60 and 3.28 degrees/lOO MHz).
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Figure 7.21 shows the initial comparison between measured and

calculated data with no compensation for the connector fringing

capacitance. The shunt capacitance required to bring the calculated

data in line with the measured data at 1500 MHz is now 0.29 pF. This

value is significantly smaller than the previous case. As already

pointed out, the discrepancy is probably due to dimensional

inaccuracies in stub fabrication.

The result of including the connector fringing capacitance at all

frequencies is shown in Figure 7.22. Agreement is excellent up to

2300 MHz. Inaccuracies above 2300 MHz could be explained in much the

same manner as for the previous case.

Figure 7.23 shows the calculated data for both the notched and

unnotched stub. We see that at very low frequencies (less than 400

MHz), where the stub may be viewed as a parallel plate capacitor,

introducing the notch decreased the capacitance and made the reactance

more negative. At about 1000 MHz, we see that the first resonance has

moved lower in frequency, due to the expected inductive nature of the

narrower width in the region of the notch. We can see that at many

frequencies, the differences between the notched and unnotched stud

calculations, while small, are greater than the differences between

measured and calculated data in either case.

Figure 7.24 shows the current distribution on the notched Stub at

various frequencies. The current is seen to flow around the notch in

all cases. An unusual lateral current, smaller but similar to that in

the vicinity of the source, is also seen near the beginning and end of

the notch. The locations of the current reversals on the interior of
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the stub are also affected by the notch.
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Figure 7.1. Geometry of the x directed current patch used for
subsequent calculations of the resulting electric
field. The dashed line indicates the cross section
along which the analyses will be performed.
All dimensions are in cm.

2.0

----.I : iI - fco---

Figure-7.2. Geometry of the y directed current patch used for
suDsequent calculations of the resulting electric
field. The dashed line indicates the cross 5ection
alona which the analyses will be performed.
All dimensions are in cm.
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Figure 7.13. (TOP) The initial comparison between measured and
calculated for an open stub shows error at high
frequencies and at high impedance levels. Fringing
capacitance from the input SMA connector 1s
suspected.

Fi-"ire 7.14. (BOTTOM) After adding a Shunt capacitor to the
calculated data, significant improvement in the
agreement between measured and calculated data is
realized.
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Figure 7.18. Conceptual representation of the current
distribution on a stub. The current is injected
into the center of the stub by the connector. The
current then flows immediately to the edge of the
stub then propagates down along the edge smoot, ly
going to zero at the end of the stub.
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Chapter 8

CONCLUSION

We have described a technique for the electromagnetic analysis of

shielded microstrip circuits. The technique consists of subdividing

the microstrip metalization into small rectangular subsections. There

is one set of rectangles for x directed current and a second, offset,

set of rectangles for y directed current. A 'roof-top' distribution

of current is assumed in each rectangle. The magnitude of the current

on each rectangle is adjusted so as to meet boundary conditions (zero

tangential electric field) on the metalization. Once the currents are

determined, the problem is solved and the N-port circuit parameters

follow immediately. The electric fields due to current in each small

rectangle are determined by expanding the fields as a sum of

rectangular waveguide modes. This representation of the fields is

closely related to the spectral domain approach.

The technique has been implemented in Pascal on an IBM-PC with an

8087 numeric coproccessor. Pascal was selected for its structure,

maintainability and portability. The software makes extensive use of

advanced data structures such as records, dynamic arrays, pointers and

linked lists. The software is heavily vectorized so as to quickly

take advantage of any array or parallel processing capability which

may become available. The existing software is capable of the

analysis of smafl ci-cuits (10 to 20 subsections) in several minutes,

while larger circuits (100 to 200 subsections) require several hours

pr3' recuency'. T:ieiw ib ti;i consideranle room for improving tne

efficiency of the software. In addition, a mouse based data capture
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program has been written which allows the specification of complex

microstrip geometries graphically.

Two microstrip circuits have been built, an open circuited stub

and a notched open circuited stub. Both stubs were 10 cm long and

2.54 cm wide. The large dimensions were chosen to ease fabrication

requirements and to minimize measurement errors. Both circuits were

measured on an HP8510 automated network analyzer. Comparison of

computed results with the measurements shows a high degree of

accuracy.

This analysis is initially expected to be useful in the creation

of data bases of S-parameters of specific microstrip discontinuities.

The effect of the port connecting transmission lines can be removed by

the analysis of appropriate shorted microstrip stubs. This is a task

which, for many discontinuities, is even within the capability of the

IBM-PC.

As fast computers become more available, it is not unreasonable

to consider the analysis of entire microstrip circuits. It is with

this application in mind that the software was vectorized. With array

processing or parallel processing machines, the analysis of circuits

containing several thousand subsections becomes a real possibility.
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